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Abstract. There are problems in physics and particularly in field theory which are defined 
by complex-valued weight functions e-s where S is a polynomial action S ; Rn + @. The 
conditions under which a convergent complex Langevin calculation correctly simulates such 
integnls are discussed. All conditions on the process which are used to prove proper convergence 
are defined in the stationary limit. 

1. Introduction 

Complex Langevin (CL) methods have turned out to be quite useful in the calculation 
(simulation) of high dimensional integrals over complex-valued weight functions of the 
form ecS, where S is the action or the Hamiltonian of some physical system. Since there 
is no formal restriction to a real-valued drift term for Langevin equations, the application 
of CL is convincingly simple [l]. Unfortunately one has to deal with two problems of 
uncertainty. The first is that it is apriuri unknown whether the process will converge at all. 
The second problem is that, although the process has converged, it will not necessarily give 
the correct answer. This is, that long time averages of such a process do not necessarily 
simulate the complex valued weight function integrals. CL is known to sometimes give the 
wrong answer (see e.g. [Z]). 

Several attempts have been made to understand CL (e.g. see references [24]). For 
some simple actions the behaviour of CL can be improved by modifying the drift term with 
an appropriate kernel, but for general problems the choice of the kernel is not clear [5]. 
Recently progress has been made in the comprehension of the results which one gets from a 
convergent process [6,7]. In particular the assumptions needed to guarantee correct results 
for convergent processes on certain compact manifolds (SI, S,) turn out to be surprisingly 
simple and easy to verify in a numerical simulation. Contrary to that, many assumptions are 
used to prove the behaviour of processes on R" driven by polynomial actions and moreover 
these assumptions are rather technical [6]. 

For polynomial actions a lot of attention has been given to the existence of a pseudo 
Fokker-Planck (FP) equation which describes the dynamics of a possibly equivalent complex 
valued weight function 161. In earlier investigations especially the spectrum of this operator 
played a major role [l]. But statements on the properties of the specmm are not sufficient 
to draw conclusions on the correctness or the convergence of CL [6]. Certainly, if one 
can show that the pseudo m equation exists and that the real part of the spectrum of the 
operator is semidefinite then CL converges but not necessarily to the desired result. Further 

t Supported by Fonds zur Farderung der Wissenschaftlichen Forschung in Ostemich, project P7849. 

0305.4470/94/041325+06$19.50 @ 1994 IOP Publishing Ltd 1325 



1326 H Gausterer 

conditions must hold (see [SI). Except for very simple cases it is hard and most unlikely 
to get exact information OR the complete spectrum. Certainly there always exists the real 
FP operator for the process and the convergence of the process follows if one can prove 
that the operator has a unique non-negative integrable solution to the zero eigenvalue. But 
this is also very hard and so far there is no classification scheme for actions which have 
the suitable properties. So, to get information on the convergence for any problem one 
must check either the existence and the whole specmm of the pseudo FP operator or the 
zero eigenvalue properties of the red FP operator. In practice therefore the question of 
convergence still remains a matter of experiment and experience. 

2. Proper convergence 

Let us now turn to the main purpose of the paper and examine in a rigorous fashion the 
conditions under which CL, if convergent, gives the right answer. To demonstrate this, 
several conditions at finite time have been put on the process in [6]. In this approach fewer 
conditions on the process are used and these conditions are put forward to t + CO. For 
simplicity the discussion and the formulae are restricted to the one dimensional case. All 
following statements allow for an immediate generalization to W". I t  will be assumed that 
the system of interest is described by a complex polynomial action of degree N 

S : R + C such that e-' E S@). S(W) is the Schwartz space of Cm functions of rapid 
decrease. With g(x)  a polynomial of degree M it is thus guaranteed, that the quantities of 
physical interest 

(g(x))  - g ( x )  e-'(') dx i L  
do exist, provided 0 e ]NI. If S would be real valued everything would now be 
straightforward ergodic theory and the long-time averages computed with the Langevin 
equation would reproduce the ensemble average of the system. 

In the complex case analytic continuation leads to the following stochastic differential 
equation: 

dZ(t) = F ( Z ( t ) )  dt + dW(t) 

with the drift term 

1 dS(z) 
2 dz 

F ( z )  = 

(2.4) 

W ( t )  i s  a standard Wiener process with zero mean and covariance 

E (Wdw(rz)) = min(f1, fd.  (2.6) 
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Equation (2.4) is the so called CL equation. This equation has a locally unique solution 
which is defined up to a random explosion time [9]. In particular (2.4) describes a two- 
dimensional diffusion process: 

dX(r) = G(X(s), Y(r)) d r  + dW(s) 

dY(r) = H(X(r), Y(r))dr. 

With S(z) = u ( x ,  y) + iu(x, y), we have 

Special to this process is that (2.8) looks like a deterministic equation due to the zero 
diffusion coefficient. Nevertheless this is a-stochastic equation through the dependence on 
X ( t ) .  The singular diffusion matrix causes a lot of problems. So, contrary to the real 
action case it is in general not possible to determine from the drift and diffusion terms 
 whether there exists a unique stationary distribution density for this process [8]. As already 
mentioned in the introduction there is no  general proof on the existence of a stationary 
distribution density. For the moment let us assume that for the process X(t), Y ( t )  there 
exists a unique stationary distribution density f ( x ,  y). The idea behind CL then is that 

lim E(g(X(t)+iY(f))) = /" g(n +iy)f(x,y)drdy = (2.10) 
lR2 f+m 

might hold. 

(1) S is a complex valued polynomial action of degree N such that 

Assume: 

and 

(2.12) 

(2) For 

c(k, t) F E(eikz")) = /" eikf'+iy)f(x, y ,  t) dr dy 
P 

(2.13) 

the limit t + a3 exists pointwise and 

lim c,(k) cm(k) E S@). (2.14) 
r-m 

(3) Further 

lim IE(Z"(t)eikz('))Icm forall O < n < N - 1  k E R .  (2.15) 
f+m 

Equation (2.10) then holds at least for g(z) a polynomial of degree M < N - I. 
Moreover (2.10) holds for any higher moment E(Z"(t)). n > N which exist for t --f 00. 
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From assumption 2 we know that there is a to -z w such that c(k,  t )  exists and from 
assumption 3 that there is a tl < 00 such that E(Z"(f)eikZ"') exists. Applying the It6 rule 
one gets with F ( z )  as defined in (2.5) 

aE(eikZ(l)) k2 
a t  2 

= ikE (eikZ(')F(Z(t))) - --E (eikZ(')) . (2.16) 

Due to assumptions 2 and 3, equation (2.16) exists for t' = max(t0, t ,).  As a side result we 
get that, if c(k,  t )  E CN-'(R) with respect to k ,  (2.16) can be understood as the dynamical 
equation for c ( k ,  t ) :  

(2.17) 

Note that if assumption 3 does not hold, (2.16) can also not be defined in the sense of 
distributions, This is because we are not simply dealing with Fourier transforms but with 
their possibly not existing analytic continuations. 

Let us now define h ( x )  as 

From assumption 2 follows that L(x) E S(R). Using (2.18) and assumption 3 

(2.18) 

(2.19) 

for 0 < n < N - 1 and k E R. Applying the above result to (2.16) one obtains in the limit 
t + w  

(2.20) 

Integrating the right-hand side of (2.20) by parts gives that L(x) is a L'(B, dx) zero 
eigenvalue solution of a Fp type differential operator with a complex drift term (pseudo 
FP operator). 

(2.21) 

I has two zero eigenvalue solutions. One is 

i ,  ( x )  - E S(W (2.22) 

which fits to assumption 2, since as the Fourier transform of c,(k) it must be a Schwartz 
function. For the second solution 

(2.23) 
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one can show that 

(2.24) 

This contradicts assumption 2. So, the only possible solution is the one proportional to e-s 
and 

for 0 < n < N - 1 and k E R. If further E ( Z " ( f ) ) ,  n > N for t + 00 exist then 

(2.25) 

(2.26) 

Let us now briefly discuss the assumptions. Polynomial actions are very natural since 
most physical systems defined on R" have polynomial actions. Since these actions must 
be bounded from below it follows that e-' E S. Condition 2 must be there otherwise the 
solution &(x) cannot be excluded. With the correctness requirement on CL that 

(2.27) 

this condition is also a necessary condition. Assumption 3 looks technical, but is so far 
required to relate f i i  ( x ) ,  the Fourier transform of c,(k), to the Foker-Planck type operator 
T. This condition finally allows us to~show the correctness of CL. It would be nice to 
eliminate assumption 3 by showing that it follows from assumption 2. Unfomnately the 
integral transform defined by (2.13) is not an injective mapping. To the authors knowledge 
the nature of this integral transform has not been analysed in the literature. At present, 
without more detailed information on the probability density (in general not available), it is 
perhaps impossible to draw a conclusion on the properties of the function from the properties 
of its image. In a numerical simulation certainly such mathematical criteria is hard to verify 
exactly. Nevertheless experience tells us that when plotting such expectation values (cm(k), 
E(Z" e'kz)) one gets a very clear sign of the quality of the result [lo]. 

3. Conclusions 

The criteria under which a convergent CL simulation leads to correct results have been 
significantly simplified. The assumptions used in the present proof are. much closer to a 
numerical verification than the one used in reference [6]. Unfomnately a complete theory 
of CL is still lacking. However, the situation that it was generally neither a priori nor a 
posteriori possible to prove convergence to the desired result has been ameliorated in as 
far as a simple a posteriori proof is now possible. 
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